Product Cover Image

Chemistry: Structure and Properties, CourseSmart eTextbook

By Nivaldo J. Tro

Published by Prentice Hall

Published Date: Jan 6, 2014


Note: You are purchasing a standalone product; Mastering does not come packaged with this content. If you would like to purchase both the physical text and Mastering search for ISBN-10: 0321729730 /ISBN-13: 9780321729736. That package includes ISBN-10: 0321834682/ISBN-13: 9780321834683 and ISBN-10: 0321934105 /ISBN-13: 9780321934109.

Mastering is not a self-paced technology and should only be purchased when required by an instructor.

Table of Contents

 1     Atoms

1.1   A Particulate View of the World: Structure Determines Properties  
1.2   Classifying Matter: A Particulate View
1.3   The Scientific Approach to Knowledge    
1.4   Early Ideas about the Building Blocks of Matter    
1.5   Modern Atomic Theory and the Laws That Led to It
1.6   The Discovery of the Electron
1.7   The Structure of the Atom    
1.8   Subatomic Particles: Protons, Neutrons, and Electrons
1.9   Atomic Mass: The Average Mass of an Element’s Atoms    

1.10 The Origins of Atoms and Elements     

2      Measurement, Problem Solving, and the Mole Concept
2.1  The Metric Mix-up: A $125 Million Unit Error
2.2  The Reliability of a Measurement
2.3  Density
2.4  Energy and Its Units
2.5  Converting between Units
2.6   Problem-Solving Strategies  
2.7   Solving Problems Involving Equations
2.8   Atoms and the Mole: How Many Particles?

3      The Quantum-Mechanical Model of the Atom    
3.1   Schrödinger’s Cat
3.2   The Nature of Light    
3.3   Atomic Spectroscopy and the Bohr Model    
3.4   The Wave Nature of Matter: The de Broglie Wavelength, the Uncertainty Principle, and Indeterminacy    
3.5   Quantum Mechanics and the Atom    
3.6   The Shapes of Atomic Orbitals

4       Periodic Properties of the Elements    
4.1    Aluminum: Low-Density Atoms Result in Low-Density Metal
4.2    Finding Patterns: The Periodic Law and the Periodic Table    
4.3    Electron Configurations: How Electrons Occupy Orbitals    
4.4    Electron Configurations, Valence Electrons, and the Periodic Table    
4.5    How the Electron Configuration of an Element Relates to Its Properties
4.6    Periodic Trends in the Size of Atoms and Effective Nuclear Charge    
4.7    Ions: Electron Configurations, Magnetic Properties, Ionic Radii, and Ionization Energy   

4.8    Electron Affinities and Metallic Character    


5       Molecules and Compounds     
5.1    Hydrogen, Oxygen, and Water
5.2    Types of Chemical Bonds
5.3     Representing Compounds: Chemical Formulas and Molecular Models
5.4     The Lewis Model: Representing Valence Electrons with Dots    
5.5     Ionic Bonding: The Lewis Model and Lattice Energies
5.6     Ionic Compounds: Formulas and Names
5.7     Covalent Bonding: Simple Lewis Structures
5.8     Molecular Compounds: Formulas and Names    
5.9     Formula Mass and the Mole Concept for Compounds    

5.10   Composition of Compounds    
5.11   Determining a Chemical Formula from Experimental Data    
5.12   Organic Compounds

6        Chemical Bonding I: Drawing Lewis Structures and Determining Molecular Shapes    
6.1     Morphine: A Molecular Imposter
6.2     Electronegativity and Bond Polarity
6.3     Writing Lewis Structures for Molecular Compounds and Polyatomic Ions     
6.4     Resonance and Formal Charge
6.5     Exceptions to the Octet Rule: Odd-Electron Species, Incomplete Octets, and Expanded Octets    
6.6     Bond Energies and Bond Lengths
6.7     VSEPR Theory: The Five Basic Shapes    
6.8     VSEPR Theory: The Effect of Lone Pairs    
6.9     VSEPR Theory: Predicting Molecular Geometries   

6.10   Molecular Shape and Polarity   


7        Chemical Bonding II: Valence Bond Theory and Molecular Orbital Theory
7.1     Oxygen: A Magnetic Liquid
7.2     Valence Bond Theory: Orbital Overlap as a Chemical Bond    
7.3     Valence Bond Theory: Hybridization of Atomic Orbitals    
7.4      Molecular Orbital Theory: Electron Delocalization

7.5     Molecular Orbital Theory: Polyatomic Molecules    
7.6     Bonding in Metals and Semiconductors

8         Chemical Reactions and Chemical Quantities
8.1      Climate Change and the Combustion of Fossil Fuels
8.2      Chemical Change
8.3       Writing and Balancing Chemical Equations    
8.4       Reaction Stoichiometry: How Much Carbon Dioxide?

8.5       Limiting Reactant, Theoretical Yield, and Percent Yield    
8.6       Three Examples of Chemical Reactions: Combustion, Alkali Metals, and Halogens

9           Introduction to Solutions and Aqueous Reactions
9.1        Molecular Gastronomy
9.2        Solution Concentration
9.3        Solution Stoichiometry    
9.4        Types of Aqueous Solutions and Solubility   

9.5        Precipitation Reactions    
9.6        Representing Aqueous Reactions: Molecular, Ionic, and Complete Ionic Equations    
9.7       Acid–Base Reactions
9.8      Gas-Evolution Reactions    
9.9      Oxidation–Reduction Reactions    

10       Thermochemistry    
10.1    On Fire, But Not Consumed
10.2    The Nature of Energy: Key Definitions
10.3    The First Law of Thermodynamics: There Is No Free Lunch    
10.4     Quantifying Heat and Work    
10.5     Measuring ΔE for Chemical Reactions: Constant-Volume Calorimetry    
10.6     Enthalpy: The Heat Evolved in a Chemical Reaction at Constant Pressure
10.7     Measuring ΔH for Chemical Reactions: Constant-Pressure Calorimetry
10.8     Relationships Involving ΔHrxn    
10.9     Determining Enthalpies of Reaction from Bond Energies
10.10   Determining Enthalpies of Reaction from Standard Enthalpies of Formation
10.11   Lattice Energies for Ionic Compounds    

11        Gases    
11.1     Supersonic Skydiving and the Risk of Decompression
11.2     Pressure: The Result of Particle Collisions        
11.3    The Simple Gas Laws: Boyle’s Law, Charles’s Law, and Avogadro’s Law    
11.4    The Ideal Gas Law    
11.5    Applications of the Ideal Gas Law: Molar Volume, Density, and Molar Mass of a Gas
11.6    Mixtures of Gases and Partial Pressures    
11.7    A Particulate Model for Gases: Kinetic Molecular Theory    
11.8    Temperature and Molecular Velocities
11.9    Mean Free Path, Diffusion, and Effusion of Gases    
11.10  Gases in Chemical Reactions: Stoichiometry Revisited
11.11  Real Gases: The Effects of Size and Intermolecular Forces    

12       Liquids, Solids, and Intermolecular Forces    
12.1    Structure Determines Properties    
12.2    Solids, Liquids, and Gases: A Molecular Comparison    
12.3    Intermolecular Forces: The Forces That Hold Condensed States Together    
12.4    Intermolecular Forces in Action: Surface Tension, Viscosity, and Capillary Action    
12.5    Vaporization and Vapor Pressure    
12.6    Sublimation and Fusion    
12.7    Heating Curve for Water    
12.8    Water: An Extraordinary Substance    

13       Phase Diagrams and Crystalline Solids
13.1    Sliding Glaciers
13.2    Phase Diagrams
13.3    Crystalline Solids: Determining Their Structure by X-Ray Crystallography    
13.4    Crystalline Solids: Unit Cells and Basic Structures    
13.5    Crystalline Solids: The Fundamental Types    
13.6    The Structures of Ionic Solids
13.7    Network Covalent Atomic Solids: Carbon and Silicates    

14       Solutions    
14.1    Antifreeze in Frogs
14.2    Types of Solutions and Solubility    
14.3    Energetics of Solution Formation
14.4    Solution Equilibrium and Factors Affecting Solubility    
14.5    Expressing Solution Concentration    
14.6    Colligative Properties: Vapor Pressure Lowering, Freezing Point Depression, Boiling Point Elevation, and Osmotic Pressure    
14.7    Colligative Properties of Strong Electrolyte Solutions   


15       Chemical Kinetics    
15.1    Catching Lizards    
15.2    Rates of Reaction and the Particulate Nature of Matter

15.3    Defining and Measuring the Rate of a Chemical Reaction    
15.4    The Rate Law: The Effect of Concentration on Reaction Rate    
15.5    The Integrated Rate Law: The Dependence of Concentration on Time    
15.6    The Effect of Temperature on Reaction Rate    
15.7    Reaction Mechanisms   

15.8    Catalysis    

16       Chemical Equilibrium    
16.1    Fetal Hemoglobin and Equilibrium    
16.2    The Concept of Dynamic Equilibrium    
16.3    The Equilibrium Constant (K)    
16.4    Expressing the Equilibrium Constant in Terms of Pressure    
16.5    Heterogeneous Equilibria: Reactions Involving Solids and Liquids    
16.6    Calculating the Equilibrium Constant from Measured Equilibrium Concentrations    
16.7    The Reaction Quotient: Predicting the Direction of Change    
16.8    Finding Equilibrium Concentrations    
16.9    Le Châtelier’s Principle: How a System at Equilibrium Responds to Disturbances    

17       Acids and Bases    
17.1    Batman’s Basic Blunder    
17.2    The Nature of Acids and Bases    
17.3    Definitions of Acids and Bases    
17.4    Acid Strength and Molecular Structure
17.5    Acid Strength and the Acid Ionization Constant (Ka)    
17.6    Autoionization of Water and pH
17.7    Finding the [H3O+] and pH of Strong and Weak Acid Solutions    
17.8    Finding the [OH-] and pH of Strong and Weak Base Solutions    
17.9   The Acid–Base Properties of Ions and Salts    
17.10  Polyprotic Acids    
17.11  Lewis Acids and Bases    

18       Aqueous Ionic Equilibrium    
18.1    The Danger of Antifreeze    
18.2    Buffers: Solutions That Resist pH Change    
18.3    Buffer Effectiveness: Buffer Range and Buffer Capacity    
18.4    Titrations and pH Curves    
18.5    Solubility Equilibria and the Solubility Product Constant    
18.6    Precipitation    
18.7    Complex Ion Equilibria    

19       Free Energy and Thermodynamics    
19.1    Energy Spreads Out    
19.2    Spontaneous and Nonspontaneous Processes    
19.3    Entropy and the Second Law of Thermodynamics
19.4    Predicting Entropy and Entropy Changes for Chemical Reactions
19.5    Heat Transfer and Entropy Changes of the Surroundings    
19.6    Gibbs Free Energy    
19.7    Free Energy Changes in Chemical Reactions: Calculating     
19.8    Free Energy Changes for Nonstandard States: The Relationship between  and
19.9    Free Energy and Equilibrium: Relating  to the Equilibrium Constant (K)    

20       Electrochemistry    
20.1    Lightning and Batteries
20.2    Balancing Oxidation–Reduction Equations    
20.3    Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions
20.4    Standard Electrode Potentials
20.5    Cell Potential, Free Energy, and the Equilibrium Constant    
20.6    Cell Potential and Concentration
20.7    Batteries: Using Chemistry to Generate Electricity    
20.8    Electrolysis: Driving Nonspontaneous Chemical Reactions with Electricity
20.9    Corrosion: Undesirable Redox Reactions    

21       Radioactivity and Nuclear Chemistry    
21.1    Diagnosing Appendicitis    
21.2    The Discovery of Radioactivity    
21.3    Types of Radioactivity
21.4    The Valley of Stability: Predicting the Type of Radioactivity
21.5    Detecting Radioactivity    
21.6    The Kinetics of Radioactive Decay and Radiometric Dating
21.7    The Discovery of Fission: The Atomic Bomb and Nuclear Power    
21.8    Converting Mass to Energy: Mass Defect and Nuclear Binding Energy    
21.9    Nuclear Fusion: The Power of the Sun    
21.10  Nuclear Transmutation and Transuranium Elements    
21.11  The Effects of Radiation on Life    
21.12  Radioactivity in Medicine and Other Applications    

22       Organic Chemistry    
22.1    Fragrances and Odors    
22.2    Carbon: Why It Is Unique
22.3    Hydrocarbons: Compounds Containing Only Carbon and Hydrogen
22.4    Alkanes: Saturated Hydrocarbons    
22.5    Alkenes and Alkynes    
22.6    Hydrocarbon Reactions
22.7    Aromatic Hydrocarbons
22.8    Functional Groups    
22.9    Alcohols    
22.10  Aldehydes and Ketones
22.11  Carboxylic Acids and Esters
22.12  Ethers    
22.13  Amines    
22.14  Polymers    

23       Transition Metals and Coordination Compounds    
23.1    The Colors of Rubies and Emeralds    
23.2    Properties of Transition Metals
23.3    Coordination Compounds
23.4    Structure and Isomerization    
23.5    Bonding in Coordination Compounds
23.6    Applications of Coordination Compounds

Appendix I    The Units of Measurement
Appendix II     Significant Figures
Appendix III Common Mathematical Operations in Chemistry    
A Scientific Notation    
B Logarithms    
C Quadratic Equations    
D Graphs    
Appendix IV    Useful Data    
A Atomic Colors    
B Standard Thermodynamic Quantities for Selected Substances at 25 °C    
C Aqueous Equilibrium Constants at 25 °C    
D Standard Reduction Half-Cell Potentials at 25 °C    
E Vapor Pressure of Water at various Temperatures    
Appendix V    Answers to Selected Exercises    
Appendix VI    Answers to In-Chapter Practice Problems    



Purchase Info ?

With CourseSmart eTextbooks and eResources, you save up to 60% off the price of new print textbooks, and can switch between studying online or offline to suit your needs.

Once you have purchased your eTextbooks and added them to your CourseSmart bookshelf, you can access them anytime, anywhere.

Buy Access

Chemistry: Structure and Properties, CourseSmart eTextbook
Format: Safari Book

$115.99 | ISBN-13: 978-0-321-93437-6