# Fundamentals of Chemical Engineering Thermodynamics

Published Date: Oct 2, 2012

More Product Info

## Description

The Clear, Well-Organized Introduction to Thermodynamics Theory and Calculations for All Chemical Engineering Undergraduate Students

This text is designed to make thermodynamics far easier for undergraduate chemical engineering students to learn, and to help them perform thermodynamic calculations with confidence. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas focuses on “why” as well as “how.” He offers extensive imagery to help students conceptualize the equations, illuminating thermodynamics with more than 100 figures, as well as 190 examples from within and beyond chemical engineering.

Part I clearly introduces the laws of thermodynamics with applications to pure fluids. Part II extends thermodynamics to mixtures, emphasizing phase and chemical equilibrium. Throughout, Matsoukas focuses on topics that link tightly to other key areas of undergraduate chemical engineering, including separations, reactions, and capstone design. More than 300 end-of-chapter problems range from basic calculations to realistic environmental applications; these can be solved with any leading mathematical software.

Coverage includes

• Pure fluids, PVT behavior, and basic calculations of enthalpy and entropy

• Fundamental relationships and the calculation of properties from equations of state

• Thermodynamic analysis of chemical processes

• Phase diagrams of binary and simple ternary systems

• Thermodynamics of mixtures using equations of state

• Ideal and nonideal solutions

• Partial miscibility, solubility of gases and solids, osmotic processes

• Reaction equilibrium with applications to single and multiphase reactions

Preface         xiii

Acknowledgments         xvii

Nomenclature         xxi

Part I: Pure Fluids         1

Chapter 1: Scope and Language of Thermodynamics         3

1.1 Molecular Basis of Thermodynamics   5

1.2 Statistical versus Classical Thermodynamics   11

1.3 Definitions   13

1.4 Units   22

1.5 Summary   26

1.6 Problems   26

Chapter 2: Phase Diagrams of Pure Fluids         29

2.1   The PVT Behavior of Pure Fluid   29

2.2   Tabulation of Properties   40

2.3   Compressibility Factor and the ZP Graph   43

2.4   Corresponding States   45

2.5   Virial Equation   53

2.6   Cubic Equations of State   57

2.7   PVT Behavior of Cubic Equations of State   61

2.8   Working with Cubic Equations   64

2.9   Other Equations of State   67

2.10 Thermal Expansion and Isothermal Compression   71

2.11 Empirical Equations for Density   72

2.12 Summary   77

2.13 Problems   78

Chapter 3: Energy and the First Law         87

3.1   Energy and Mechanical Work   88

3.2   Shaft Work and PV Work   90

3.3   Internal Energy and Heat   96

3.4   First Law for a Closed System   98

3.5   Elementary Paths   101

3.6   Sensible Heat–Heat Capacities   109

3.7   Heat of Vaporization   119

3.8   Ideal-Gas State   124

3.9   Energy Balances and Irreversible Processes   133

3.10 Summary   139

3.11 Problems   140

Chapter 4: Entropy and the Second Law         149

4.1   The Second Law in a Closed System   150

4.2   Calculation of Entropy   153

4.3   Energy Balances Using Entropy   163

4.4   Entropy Generation   167

4.5   Carnot Cycle   168

4.6   Alternative Statements of the Second Law   177

4.7   Ideal and Lost Work   183

4.8   Ambient Surroundings as a Default Bath–Exergy   189

4.9   Equilibrium and Stability   191

4.10 Molecular View of Entropy   195

4.11 Summary   199

4.12 Problems   201

Chapter 5: Calculation of Properties         205

5.1   Calculus of Thermodynamics   205

5.2   Integration of Differentials   213

5.3   Fundamental Relationships   214

5.4   Equations for Enthalpy and Entropy   217

5.5   Ideal-Gas State   219

5.6   Incompressible Phases   220

5.7   Residual Properties   222

5.8   Pressure-Explicit Relations   228

5.9   Application to Cubic Equations   230

5.10 Generalized Correlations   235

5.11 Reference States   236

5.12 Thermodynamic Charts   242

5.13 Summary   245

5.14 Problems   246

Chapter 6: Balances in Open Systems         251

6.1 Flow Streams   252

6.2 Mass Balance   253

6.3 Energy Balance in Open System   255

6.4 Entropy Balance   258

6.5 Ideal and Lost Work 266

6.6 Thermodynamics of Steady-State Processes   272

6.7 Power Generation   295

6.8 Refrigeration   301

6.9 Liquefaction   309

6.11 Summary   323

6.12 Problems   324

Chapter 7: VLE of Pure Fluid         337

7.1 Two-Phase Systems   337

7.2 Vapor-Liquid Equilibrium   340

7.3 Fugacity   343

7.4 Calculation of Fugacity   345

7.5 Saturation Pressure from Equations of State   353

7.6 Phase Diagrams from Equations of State   356

7.7 Summary   358

7.8 Problems   360

Part II: Mixtures         367

Chapter 8: Phase Behavior of Mixtures   369

8.1 The Txy Graph  370

8.2 The Pxy Graph   373

8.3 Azeotropes   380

8.4 The xy Graph   381

8.5 VLE at Elevated Pressures and Temperatures   383

8.6 Partially Miscible Liquids   384

8.7 Ternary Systems   390

8.8 Summary   393

8.9 Problems   394

Chapter 9: Properties of Mixtures         401

9.1 Composition   402

9.2 Mathematical Treatment of Mixtures   404

9.3 Properties of Mixing   409

9.4 Mixing and Separation   411

9.5 Mixtures in the Ideal-Gas State   413

9.6 Equations of State for Mixtures   419

9.7 Mixture Properties from Equations of State   421

9.8 Summary   428

9.9 Problems   428

Chapter 10: Theory of Vapor-Liquid Equilibrium         435

10.1 Gibbs Free Energy of Mixture   435

10.2 Chemical Potential   439

10.3 Fugacity in a Mixture   443

10.4 Fugacity from Equations of State   446

10.5 VLE of Mixture Using Equations of State   448

10.6 Summary   453

10.7 Problems   454

Chapter 11: Ideal Solution         461

11.1 Ideality in Solution   461

11.2 Fugacity in Ideal Solution   464

11.3 VLE in Ideal Solution—Raoult’s Law   466

11.4 Energy Balances   475

11.5 Noncondensable Gases   480

11.6 Summary   484

11.7 Problems   484

Chapter 12: Nonideal Solutions         489

12.1 Excess Properties   489

12.2 Heat Effects of Mixing   496

12.3 Activity Coefficient   504

12.4 Activity Coefficient and Phase Equilibrium   507

12.5 Data Reduction: Fitting Experimental Activity Coefficients   512

12.6 Models for the Activity Coefficient   515

12.7 Summary   531

12.8 Problems   533

Chapter 13: Miscibility, Solubility, and Other Phase Equilibria           545

13.1 Equilibrium between Partially Miscible Liquids   545

13.2 Gibbs Free Energy and Phase Splitting   548

13.3 Liquid Miscibility and Temperature   556

13.4 Completely Immiscible Liquids   558

13.5 Solubility of Gases in Liquids   563

13.6 Solubility of Solids in Liquids   575

13.7 Osmotic Equilibrium   580

13.8 Summary   586

13.9 Problems   586

Chapter 14: Reactions              593

14.1 Stoichiometry   593

14.2 Standard Enthalpy of Reaction   596

14.3 Energy Balances in Reacting Systems   601

14.4 Activity   606

14.5 Equilibrium Constant   614

14.6 Composition at Equilibrium   622

14.7 Reaction and Phase Equilibrium   624

14.8 Reaction Equilibrium Involving Solids   629

14.9 Multiple Reactions   632

14.10 Summary   636

14.11 Problems   637

Bibliography         647

Appendix A: Critical Properties of Selected Compounds         649

Appendix B: Ideal-Gas Heat Capacities         653

Appendix C: Standard Enthalpy and Gibbs Free Energy of Reaction         655

Appendix D: UNIFAC Tables         659

Appendix E: Steam Tables         663

Index         677

### Digital

Fundamentals of Chemical Engineering Thermodynamics

This publication is not currently for sale.