Product Cover Image

Nonlinear Control

By Hassan K. Khalil

Published by Prentice Hall

Published Date: Feb 6, 2014

Description

For a first course on nonlinear control that can be taught in one semester

¿

This book emerges from the award-winning book, Nonlinear Systems, but has a distinctly different mission and¿organization. While Nonlinear Systems was intended as a reference and a text on nonlinear system analysis and its application to control, this streamlined book is intended as a text for a first course on nonlinear control. In Nonlinear Control, author Hassan K. Khalil employs a writing style that is intended to make the book accessible to a wider audience without compromising the rigor of the presentation.

¿

Teaching and Learning Experience

This program will provide a better teaching and learning experience–for you and your students. It will help:

  • Provide an Accessible Approach to Nonlinear Control: This streamlined book is intended as a text for a first course on nonlinear control that can be taught in one semester.
  • Support Learning: Over 250 end-of-chapter exercises give students plenty of opportunities to put theory into action.

Table of Contents

1 Introduction 1

1.1 Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Nonlinear Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Overview of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Two-Dimensional Systems 15

2.1 Qualitative Behavior of Linear Systems . . . . . . . . . . . . . . . . . . 17

2.2 Qualitative Behavior Near Equilibrium Points . . . . . . . . . . . . . . 21

2.3 Multiple Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Limit Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Numerical Construction of Phase Portraits . . . . . . . . . . . . . . . . 31

2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Stability of Equilibrium Points 37

3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Lyapunov’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 The Invariance Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Exponential Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Region of Attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Converse Lyapunov Theorems . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Time-Varying and Perturbed Systems 75

4.1 Time-varying Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Perturbed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Boundedness and Ultimate Boundedness . . . . . . . . . . . . . . . . . 85

4.4 Input-to-State Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Passivity 103

5.1 Memoryless Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 State Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Positive Real Transfer Functions . . . . . . . . . . . . . . . . . . . . . 112

5.4 Connection with Lyapunov Stability . . . . . . . . . . . . . . . . . . . 115

5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Input-Output Stability 121

6.1 L Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 L Stability of State Models . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 L2 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Stability of Feedback Systems 141

7.1 Passivity Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 The Small-Gain Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3 Absolute Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.3.1 Circle Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.2 Popov Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8 Special Nonlinear Forms 171

8.1 Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.2 Controller Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.3 Observer Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9 State Feedback Stabilization 197

9.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.3 Feedback Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.4 Partial Feedback Linearization . . . . . . . . . . . . . . . . . . . . . . 207

9.5 Backstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

9.6 Passivity-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . 217

9.7 Control Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . . 222

9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

10 Robust State Feedback Stabilization 231

10.1 Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10.2 Lyapunov Redesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

10.3 High-Gain Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

11 Nonlinear Observers 263

11.1 Local Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

11.2 The Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . 266

11.3 Global Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

11.4 High-Gain Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

12 Output Feedback Stabilization 281

12.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

12.2 Passivity-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . 283

12.3 Observer-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . 286

12.4 High-Gain Observers and the Separation Principle . . . . . . . . . . . . 288

12.5 Robust Stabilization of Minimum Phase Systems . . . . . . . . . . . . 296

12.5.1 Relative Degree One . . . . . . . . . . . . . . . . . . . . . . . 296

12.5.2 Relative Degree Higher Than One . . . . . . . . . . . . . . . 298

12.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

13 Tracking and Regulation 307

13.1 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

13.2 Robust Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

13.3 Transition Between Set Points . . . . . . . . . . . . . . . . . . . . . . 314

13.4 Robust Regulation via Integral Action . . . . . . . . . . . . . . . . . . 318

13.5 Output Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

13.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

A Examples 329

A.1 Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

A.2 Mass—Spring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

A.3 Tunnel-Diode Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

A.4 Negative-Resistance Oscillator . . . . . . . . . . . . . . . . . . . . . . 335

A.5 DC-to-DC Power Converter . . . . . . . . . . . . . . . . . . . . . . . . 337

A.6 Biochemical Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

A.7 DC Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

A.8 Magnetic Levitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

A.9 Electrostatic Microactuator . . . . . . . . . . . . . . . . . . . . . . . . 342

A.10 Robot Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

A.11 Inverted Pendulum on a Cart . . . . . . . . . . . . . . . . . . . . . . . 344

A.12 Translational Oscillator with Rotating Actuator . . . . . . . . . . . . . 347

B Mathematical Review 349

C Composite Lyapunov Functions 355

C.1 Cascade Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

C.2 Interconnected systems . . . . . . . . . . . . . . . . . . . . . . . . . . 357

C.3 Singularly Perturbed Systems . . . . . . . . . . . . . . . . . . . . . . . 359

D Proofs 363

Purchase Info

ISBN-10: 0-13-349926-X

ISBN-13: 978-0-13-349926-1

Format: Book

$194.20 | Free Ground Shipping.

Add to Cart

Digital Choices ?

MyLab & Mastering with Pearson eText is a complete digital substitute for a print value pack at a lower price.

eTextbook ?

With CourseSmart eTextbooks and eResources, you save up to 60% off the price of new print textbooks, and can switch between studying online or offline to suit your needs.

Once you have purchased your eTextbooks and added them to your CourseSmart bookshelf, you can access them anytime, anywhere.

Buy Access

Nonlinear Control, CourseSmart eTextbook

$79.99 | ISBN-13: 978-0-13-349957-5