# Practical Applications in Digital Signal Processing, CourseSmart eTextbook

Published Date: Oct 19, 2012

More Product Info

## Description

This is the first DSP book to focus entirely on designing today's most important DSP applications and implementing them in hardware and software. Focusing on practical design knowledge rarely taught in the classroom, Richard Newbold gives engineering students, entry level engineers, and experienced engineers the critical DSP design information they need to be productive. Clearly and concisely, Newbold shortens the steep learning curve typically associated with DSP, equipping engineers to produce system-level, hardware-level, and software-level designs without having to reinvent technical solutions already known to industry veterans. Newbold begins by carefully introducing today's essential mathematical tools for DSP system design, including complex variables, Fourier transforms, and Z-transforms; as well as hardware and software used to implement these designs. Next, he presents complete tutorials on designing and developing core DSP applications. Every application is illustrated with detailed diagrams and thoroughly annotated figures that give readers a complete visual realization of the subject matter.

Preface xiii

Acknowledgments xxi

Chapter 1: Review of Digital Frequency 1

1.1 Definitions 2

1.2 Defining Digital Frequencies 2

1.3 Mathematical Representation of Digital Frequencies 9

1.4 Normalized Frequency 12

1.5 Representation of Digital Frequencies 13

Chapter 2: Review of Complex Variables 15

2.1 Cartesian Form of Complex Numbers 17

2.2 Polar Form of Complex Numbers 21

2.3 Roots of Complex Numbers 27

2.4 Absolute Value of Complex Numbers 35

2.5 Exponential Form of Complex Numbers 36

2.6 Graphs of the Complex Variable z 38

2.7 Limits 40

2.8 Analytic Functions 41

2.9 Singularity 42

2.10 Entire Functions 42

2.11 The Complex Number 42

2.12 Complex Differentiation 43

2.13 Cauchy-Riemann Equations 47

2.14 Simply Connected Region 51

2.15 Contours 51

2.16 Line Integrals 52

2.17 Real Line Integrals 54

2.18 Complex Line Integrals 84

2.19 Cauchy’s Theorem 96

2.20 Table of Common Integrals 109

2.21 Cauchy’s Integral 109

2.22 Residue Theory 120

2.23 References 127

Chapter 3: Review of the Fourier Transform 129

3.1 A Brief Review of the Fourier Series 129

3.2 A Brief Review of the Fourier Transform 157

3.3 Review of the Discrete Fourier Transform (DFT) 187

3.4 DFT Processing Gain 254

3.5 Example DFT Signal Processing Application 261

3.6 Discrete Time Fourier Transform (DTFT) 263

3.7 Fast Fourier Transform (FFT) 267

3.8 References 268

Chapter 4: Review of the Z-Transform 271

4.1 Complex Number Representation 271

4.2 Mechanics of the Z-Transform 274

4.3 Left-Sided Z-Transform 277

4.4 Right-Sided Z-Transform 278

4.5 Two-Sided Z-Transform 278

4.6 Convergence of the Z-Transform 279

4.7 System Stability 290

4.8 Properties of the Z-Transform 292

4.9 Common Z-Transform Pairs 304

4.10 Inverse Z-Transform 308

4.11 Pole and Zero Standard Form Plug-In Equations 334

4.12 Applications of the Z-Transform 350

4.13 Summary of Useful Equations 380

4.14 References 381

Chapter 5: Finite Impulse Response Digital Filtering 383

5.1 Review of Digital FIR Filters 384

5.2 Parks-McClellan Method of FIR Filter Design 392

5.3 PM Implementation of Half Band Filters 425

5.4 References 433

Chapter 6: Multirate Finite Impulse Response Filter Design 435

6.1 Poly Phase Filter (PPF) 436

6.2 Half Band Filter 465

6.3 Cascaded Integrator Comb (CIC) Filter 470

6.4 References 531

Chapter 7: Complex to Real Conversion 533

7.1 A Typical Digital Signal Processing (DSP) System 534

7.2 Conversion of a Complex Signal to a Real Signal 540

7.3 Complex to Real Simulation Results 560

7.4 Reference 573

Chapter 8: Digital Frequency Synthesis 575

8.1 Numerically Controlled Oscillator (NCO) 575

8.2 Enhanced NCO Phase Accumulator 608

8.3 NCO Synthesized Output Frequency Error 613

8.4 Adding a Programmable Phase Offset to the NCO Output 622

8.5 Design of an Industry-Grade NCO 628

8.6 NCO Phase Dither 641

8.7 References 644

Chapter 9: Signal Tuning 645

9.1 Continuous Time (Analog) Fourier Transform 647

9.2 Discrete Time (Digital) Fourier Transform 689

9.3 Useful Equations 754

9.4 References 759

Chapter 10: Elastic Store Memory 761

10.1 Example Application of an Elastic Store Memory 762

10.2 PCM Multiplexing Hierarchy 763

10.3 DS-1C Multiplexer Design Overview 768

10.4 Design of the Elastic Store Memory 774

10.5 Hardware Implementation of the Elastic Store Memory 792

10.6 Overall DS-1C Multiplexer Design Block Diagram 801

10.8 References 805

Chapter 11: Digital Data Locked Loops 807

11.1 Digital Data Locked Design 808

11.2 Digital Data Locked Steady State Behavior 829

11.3 Digital Data Locked Transient Behavior 834

11.4 Data Locked Loop Bit-Level Simulation 845

11.5 Engineering Note 869

11.6 Summary of Useful Equations 869

11.7 References 871

Chapter 12: Channelized Filter Bank 873

12.1 Introductory Description 873

12.2 Channelizer Functional Overview 877

12.3 Channelizer Detailed Design Concepts 919

12.4 Channelizer Software Simulation Results 962

12.5 Channelizer Hardware Design Example 967

12.6 Summary of Useful Equations 974

12.7 References 975

Chapter 13: Digital Automatic Gain Control 977

13.1 Design of a Type I RMS AGC Circuit 981

13.2 Design of a Type II RMS AGC Circuit 1044

13.3 References 1047

Appendix A: Mixed Language C/C++ FORTRAN Programming 1049

A.1 Writing a C/C++ Main Program 1051

A.2 Calling Subroutines and Functions from a C/C++ Main 1051

A.3 Writing a FORTRAN Subroutine 1054

A.4 Writing a FORTRAN Function 1055

A.5 Passing Integer Arguments 1055

A.6 Passing Floating Point Arguments 1057

A.7 Passing Array Arguments 1059

A.8 Passing Pointer Arguments 1060

A.9 Compile/Link Mixed Language C/C++ FORTRAN Programs 1063

A.10 Parks-McClellan FORTRAN Subroutine Called from C Main 1064

A.11 References 1091

Index 1093

## Purchase Info ?

With CourseSmart eTextbooks and eResources, you save up to 60% off the price of new print textbooks, and can switch between studying online or offline to suit your needs.

Once you have purchased your eTextbooks and added them to your CourseSmart bookshelf, you can access them anytime, anywhere.

Practical Applications in Digital Signal Processing, CourseSmart eTextbook
Format: Safari Book

\$65.00 | ISBN-13: 978-0-13-303840-8